If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+3n-38=0
a = 1; b = 3; c = -38;
Δ = b2-4ac
Δ = 32-4·1·(-38)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{161}}{2*1}=\frac{-3-\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{161}}{2*1}=\frac{-3+\sqrt{161}}{2} $
| -1=2-3x8 | | 2+10r=10+6r | | -6n+10=-8n+10 | | x=2(3)2*40 | | x+103+33=180 | | x+103+33=80 | | -9z=8-7z | | 4n2=20n | | 57=15x+12 | | x+103+33=108 | | 10+2w=-w-8 | | (x-3.5)^2-12.25=-3.25 | | -3q-9=-4q | | -9+y=3 | | 4/5+9x=2.7 | | 7e÷5=14 | | 4z=8+5z | | x+48+23=180 | | x+48+23=18 | | 5u-50=50 | | 2(4+2y)-3y=1 | | 4=-16t^2+24t+4 | | 10u-100=500 | | -7x-2=4x+32 | | 10u-100=100 | | 2x100+100=3x100 | | 2t+2(t+3)=12 | | 5x-5+2x=4+3x | | 14^5/2×42^3/2×21^3/2/7^x@=432 | | y+8(y+2)=52 | | -10v-10=-60 | | .877*(s-47)=s |